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Motivation

Contemporary differential exon usage statistical tests compare
multiple experimental conditions to a single reference condition.
The emergence of datasets including hundreds of experimental
conditions calls for tailored models to detect condition-specific
changes in splicing and uncover RNA binding protein-specific
regulation [1].

Summary of results

We design a novel statistical model, named Condition-specific
differential exon expression (csDEX), to discover changes in exon
usage that occur only in a small subset of conditions. The package
supports both read count- and Percent spliced-in (PSl)-based exon
expression quantification. We test for alternative splicing (AS)
changes on a public dataset with 189 shRNA knockdown samples of
different RNA binding proteins (RBPs; including SRSF1, U2AF1/2,
PTBP1, hnRNPs, TARDBP) provided by the ENCODE project [2].
We demonstrate the advantages of PSl-based quantification when
seeking changes in exon usage due to AS rather than gene
expression. The causal effect of RBP binding on AS is further
validated by multiple independent data sources, such as RBP
binding assays (eCLIP) and motif analysis, as well as successfully
retrieving cryptic exons known to be TARDBP-regulated [3].

Condition-specific differential
exon expression (csDEX)

csDEX-count csDEX-PSI

The Percent-spliced in (PSI)
Y__ of e upon condition ¢
within correspoding tran-
scripts is distributed accord-
INng to a Beta distribution:

The read count Y_ map-
ping to exon e upon condi-
tion ¢ is distributed accord-
INng to a negative binomial
(NB) distribution:

Yec - NB(I'IeC’ de) I'I)ec ~ Beta(I'IeC’ CI))

parametrized by
® mean percentage u_
® precision ¢

parametrized by
®* mean count u__
* dispersion d_

Parametrize u_ using a generalized linear model (GLM) with

* exon-specific factor B,
e condition-specific factor B
* exon-condition interaction factor B

ec

For each gene, fit the GLM in order to perform analysis of variance
(ANOVA), comparing the

a) null model - no interaction:
link(p_ ) =B+ B_
b) alternative model - interaction between exon(s) and condition(s):

link(p_ ) =B+ B +B_0_0_

d, Kronecker delta function

The link(u) function:

log(u)
logit(p) = p/ (1-p)

(csDEX-count)
(csDEX-PSI)

Pairs of candidate interactions between exon e'and ¢'are compared
using the likelihood-ratio test, resulting in a p-value. The final result is
a ranked list of candidate interacting exons and conditions.

Large number of conditions improves
hyperparameter estimation

In case of a large number of samples, dispersion can be estimated using maximum
likelihood (ML). Due to unequal library sizes across conditions, we use a
quantile-adjusted conditional ML (qCML) to generate identically distributed
pseudodata and derive a common estimate [4]. Results on simulated data confirm
gCML is the least biased in large sample cases and outperforms small
sample-based methods such as the Cox-Reid dispersion estimate.
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Experimental setup

Select human genes containing at least 1 alternative (cassette) exon and
between 5 and 15 exonic parts (annotation hg19/5-15) or between 13 and
66 exonic parts (hg19/13-66).
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Differential exon usage analysis, integrating ENCODE RNA-seq data and 189
RBP knockdowns. Identify RBP-specific changes in exonic part usage.
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Non-negligible amount of variance in the
shRNA+RNASeq dataset due to batch effects
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RBP binding and motif enrichment increases with
complex design

RBP binding and motif enrichment analyses within regions of
150 nt centered 3’ splice sites.
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Two modeling designs are compared: case vs. control (one diff. analysis per each
knockdown) and batch design (joint diff. analysis for all RBPs in a batch).

Regulated alternative exonic parts (hg19/13-66, FDR<10%) are used as foreground
and 20,000 non-significantly regulated as a background set. 7 shown RBPs display
binding enrichment of at least 1.5-fold in at least one regime. No comparable
enrichment is observed when using case vs. control design.

Inset values display the values of cross-correlation (CC) between eCLIP and motif
signal. Highlighted are cases where CC > 0.15.
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O github.com/mstrazar/csDEX

$ R
> require(devtools)
> install_github("mstrazar/csDEX")

Perceived change in PSI implies change in read
counts, but not vice versa

Comparing for each diff. used exonic part e in condition c:

- AW; difference between ¥__and actual average ¥W_, over all ¢’ (x-axis)
- AY; log -fold difference between read count Y__ and average Y,_ over ¢’ (y-axis)

Exonic parts retrieved by PSl-based models show strongest agreement

(rMATS, Pearson corr. = 0.31; csDEX-PSI, corr. = 0.34).
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csDEX retrieves condition-specific changes

Uniqueness score: for each significant pair e and ¢ the number of conditions ¢’ where
the same exonic part e is also significant subject to FDR threshold of 10 %.
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condition-specificity

csDEX-PSI retrieves known splicing events with
highest precision
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alternative .98 .98 915 806 817 .807 UCSC knownAlt annotation is used

as ground truth for validation. For
each method, we select the top
10,000 most significant interactions.
For each of the nine AS event types,
we compute the cumulative
precision for each possible
significance cut-off.

altFinish .14 .13 .004 .024 .023 .019
altFivePrime .49 .53 .217 .084 .094 .056
altPromoter .86 .88 .122 .368 .453 .285
altThreePrime .47 .51 .256 .086 .203 .047
bleedingExon .77 .80 .350 .238 .252 .226
cassetteExon .93 .94 900 .487 .530 .399
retainedIntron .54 .58 .185 .101 .104 .069
strangeSplice .13 .14 .000 .021 .173 .007

Precision: number of exonic parts
annotated with the particular AS
event (positives) versus constitutive
exonic parts (negatives).

csDEX-count retrieves TARDBP-regulated cryptic
exons

TARDBP-regulated cryptic splicing

Previously unnanotated splice site < -
pairings - cryptic exons - can emerge
upon TARDBP knockdown. We test for

TARDBP-specific changes with

csDEX-count (as cryptic exons are not S _ upreg. (4)
part of the annotation) [5]. Known 3 downreg. (42)
cryptic exons are heavily enriched inthe o s

46 significantly diff. used exons 477 . TP
(FDR<5% shown in red; o

p-value<1E-31, hypergeometric test). I
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Mean read count

diff. used cryptic non-cryptic | total
YES 20 26 46
NO o1 11319 | 11370
total 71 11345 | 11416
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